Ordinary Least Squares (OLS) Lab

Explore OLS estimation, heteroskedasticity, and omitted-variable bias. Toggle a control variable, switch between classical and robust standard errors, and inspect diagnostics like Residuals vs. Fitted.

Parameters

High correlation + excluding w ⇒ omitted-variable bias in βx.

Standard Errors

Quick Scenarios

x (key regressor)y (outcome)
OLS fit
1.801
β̂ for x
True βx = 1.20
0.538
Goodness of fit
0.601
Bias (β̂ − β)
No control; corr(x,w) = 0.60
0.135
SE for β̂x
HC1 robust

Residuals vs Fitted

FittedResiduals
Funnel shape ⇒ heteroskedasticity; curvature ⇒ misspecification (consider adding w).

Stata Implementation

* OLS with HC1 robust SEs
clear all
use "your_data.dta", clear

* Fit model
regress y x, vce(robust)

* Diagnostics
predict yhat, xb
predict e, residuals
rvfplot

* If heteroskedasticity is suspected, prefer robust SEs
* estat hettest  // Breusch–Pagan

When do OLS estimates make sense?

Key assumptions:

  • Linearity & correct specification (include relevant controls like w).
  • Exogeneity (errors uncorrelated with regressors).
  • Homoskedasticity for classical SEs — otherwise prefer robust SEs.

Good practice:

  • Report robust SEs when heteroskedasticity is plausible.
  • Check residual plots; add controls to address omitted-variable bias.
  • Document your model choices and assumptions clearly.